Crankshaft assembly 03

Crankshafts, connecting rods and pistons	
Checking, renewing and tightening connecting rod bolts	03-310
Reconditioning and squaring connecting rods	313
Removal and installation of pistons	316
Checking and reconditioning of crankshaft	318
Mounting of crankshaft	320
Replacing front crankshaft radial sealing ring	324
Replacing rear crankshaft radial sealing ring	327
Removal and installation of radial ball bearing in crankshaft	330
Removal and installation of crankshaft pulley at hub	341
Checking and correcting adjustment of TDC transmitter	345
Removal and installation of crankshaft timing gear.	350
Flywheel of driven plate and ring gear	
Removal and installation of flywheel and driven plate	410
Refinishing of flywheel	420
Renewing ring gear of flywheel	430

Job No.

03-3 10 Checking, renewing and tightening connecting rod bolts

Dimensions of connecting rod bolt

Part no.	Thread dia.	Necked-down shank dia. c when new (Fig. item 1)	Minimum necked- down shank dia. c
601 038 01 71	M 9 x 1	7.4-o. 1	7.1

Tightening connecting rod bolt

Initial torque	30 + 5 Nm
Angle of rotation torque	90-l 00"

Checking

1 Measure minimum necked-down shank dia. prior to re-use.

Note: If the minimum necked-down shank dia. of 7.1 mm is attained or less, renew connecting rod bolt.

Tightening

2 Lubricate threads and screw head contact area.

3 Tighten connecting rod bolt to 30 Nm initial torque and $90-100^{\circ}$ angle of rotation torque.

Note: Estimate angle of rotation. For this purpose, place adjustable torque wrench **in release position** (locked) into plug-in ratchet. Position adjustable torque wrench with plug-in ratchet lengthwise in relation to engine and keep turning until it is transverse in relation to engine.

Data

	001.011	148.97
Center of connecting rod bearing bore to	engine 601.911	149.03
center of connecting rod bushing bore		144.97
	engine 60 1.92 1	145.03
Width of connecting rod (B) at connecting rod		23.835
bearing bore and connecting rod bushing bore		24.165
Basic bore for connecting rod bearing shells		5 1.600
basic bore for connecting for bearing snells		51.619
	standard dimension	29.500
Basic bore for connecting rod bushing		29.521
	repair stage	
	standard dimension	29.560
Connecting rod bushing OD		29.600
	repair stage	
Connecting rod bushing ID		27.018
		27.024
Roughness of connecting rod bushing, inside		0.004
Permissible offset of connecting rod bearing bore in relation to connecting rod bushing bore with reference to 100 mm length		0.1
Permissible deviation of parallel axle alignment: Connecting rod bearing bore in relation to connecting rod bushing bore with reference to 100 mm length		0.045
Permissible difference in weight of complete connecting rods within one engine		5 g
Tightoning torque		
Fightening torque	initial torque	30 + 5 Nm

Connecting rod holto	initial torque	30 + 5 Nm
Connecting rod bolts	angle of rotation	90-I 00"

Special tool

Torque wrench, single-arm, emitting signal, with plug-in ratchet, 1/2'' square, 25-130 Nm

001 589 66 21 00

Conventional tool

Connecting rod straightener

e.g. Hahn & Kolb, D-7000 Stuttgart model BC 503

Note

End play of connecting rods is not limited at crankshaft journals, but at piston pin eyes (piston-guided connecting rods). For this purpose, thrust surfaces (arrow) are cast onto piston pin eyes.

Connecting rod bearing and connecting rod bushing bores **(B)** are of similar width.

A weight compensation is attached at left and right on connecting rod bearing cap.

Only connecting rods of similar weight may be installed in one engine.

Connecting rods, which have become overheated as a result of bearing damage (blue coloring), may no longer be used.

Connecting rod and connecting rod bearing cap are marked together. There should be no transverse score marks and notches on connecting rod shaft.

As a spare part, connecting rods with machined connecting rod bushing are available.

Reconditioning

1 Check connecting rod screws and renew, if required (03-310).

2 Mount connecting rod bearing caps. For this purpose, lubricate threads and screw head contact surface and tighten to 30 + 5 Nm.

3 Measure connecting rod bearing basic bore. At a basic bore which exceeds the value of 51.619 mm or is conical, touch up bearing cap at its contact surface on a surface plate up to max. 0.02 mm.

169 169 166 165 165 165 165 165 165

4 Press in new connecting rod bushing in such a manner that the oil bores are in alignment (arrow).

Pressing-in pressure 2450 N.

5 Machine or ream connecting rod bushing.

6 Touch up lateral thrust surfaces of connecting rod on surface plate.

Squaring

7 Square connecting rod with a connecting rod tester.

8 Align connecting rod bearing bore in relation to connecting rod bushing bore (parallel alignment).

9 Check offset of connecting rod bearing bore in relation to connecting rod bushing bore and correct, if required.

Association piston - cylinder

Engine	Piston code number	Group code letter	Normal dimension std (s piston dia.	standard) cylinder dia.
601.911	01	A	86. 970- 86. 976	87 .000-87.006
		Х	above 86.975-86.983	above 87.006-87.012
601.921	04	В	above 86.982-86.988	above 87.012-87.018

Piston standout

Distance between piston crown and cylinder	standout max. 0.96
crankcase parting surface	standout min. 0.73

Test values		when new	wear limit
Piston clearance		0.017-0.043	0.12
Difference in weight of pistons i	n one engine	6 g	10 g
Piston pin dia.		26.995-27.000	
Piston pin clearance	in connecting rod bushing	0.018-0.029	
	in piston	0.004-0.015	
Connecting rod in piston (end p	lay)	0.083-0.314	
	groove 1	0.20-0.40	1.5
Gap clearance of piston rings	groove 2	0.20-0.40	1.0
	groove 3	0.20-0.40	1.0
	groove 1	0.090-O. 120	0.20
Side clearance of piston rings	groove 2	0.050-0.080	0.15
	groove 3	0.030-0.065	0.1

Connecting rod screws	initial torque	30 + 5 Nm
	angle of rotation torque	90-l 00"

Special tools

Spreaders for piston rings

000 589 51 37 00

Clamping strap for piston rings

000 589 04 14 00

Note

The group code letter A, X or B, the piston code number 05 or 06 and the driving direction arrow are punched into piston crown.

The group code letter is also punched into cylinder crankcase parting surface.

For repairs, only pistons with group code letters "X" are available, These pistons are also for installation in cylinder bores with group code letters "A" or "B".

In the event of repairs, hone cylinder bores according to dimensions of available pistons "X" plus piston clearance.

Engine 601.911

Engine 601.921

Removal

1 Remove connecting rod with piston in upward direction.

103-26983

2 Remove piston pin circlip and push out piston pin.

3 Recondition connecting rod and square (03-313).

Installation

4 Place piston on connecting rod in such a manner that arrow (1) points in driving direction and locking grooves (2) in connecting rod to lefthand engine side.

Attention! Do not heat pistons.

103-26983

5 Push in piston pins provided with engine oil manually.

6 Insert piston pin circlip into groove.

Check piston rings for easy operation.

When installing used pistons, check piston rings for gap and side clearance.

7 Lubricate cleaned cylinder bores, connecting rod bearing journals, connecting rod bearing shells and pistons.

8 Distribute gaps of piston rings uniformly along piston circumference.

9 Mount piston ring clamping strap and introduce pistons.

Arrow in piston crown should point in driving direction.

10 Mount connecting rod bearing caps with code numbers (arrow) in relation to each other on connecting rod. Lubricate threads and screw head contact surface of connecting rod screws and tighten to 30 Nm and $90-100^{\circ}$ angle of rotation torque.

11 Rotate crankshaft and check clearance between connecting rod and crankshaft.

12 Measure distance between piston crown and cylinder crankcase parting surface in TDC position of pistons (refer to Table).

Data

Crankshaft normal dimension and repair stages	Crankshaft bearing journal dia.	Fitted bearing Associated thickness of thrust washers	Width of journal	Crankpin dia.	Crankpir width	
	57.950	2,15	26.52 26.50	47.950	27.96	
Standard dimension	57.965	2.20	26.62 26.60	47.965	28.04	
1st repair stage	57.700 57.715		26.72 26.70	47.700 47.715		
2nd repair stage	57.450 57.465	- 2.25 or	or 26.92	47.450 47.650	up to	
3rd repair stage	57.200 57.215	- 2.35 or	26.90 or	47.200 47.215	28.30	
4th repair stage	56.950 56.965	2.40	27.02	46.950 46.965		
Permissible deviation	of crankshaft journ	als and crankpins from tr	ue	0.005		
Permissible conicity o	of crankshaft journa	ls and crankpins		0.01		
Permissible deviation	of flywheel flange	from true		0.02		
Permissible axial rund	out of fitted bearing	I		0.02		
Fillets	on crankshaft be	aring journals		2.5 to 3.0		
rillets	on crankpins			3.0 to 3	3.5	
Permissible deviation			al II, IV	0.07		
journals from true when mounted in outer crankshaft bearing journals journal III Scleroscope hardness of crankshaft journals and crankpins			1111	0.10		
			55-74			
Permissible unbalance	e of crankshaft			15cmg		
Special tool						
Impact hardness teste		6	1: La	000 59	9 20 21 00	

When testing and reconditioning crankshafts, proceed in sequence of diagram shown below.

Diagram

* Refer to section "Explanations concerning diagram".

V = scrap.

Note

Refer to crankshaft, straighten

Explanations concerning diagram

Crack test

Clean crankshaft. Bearing journals should be free of oil and grease.

Magnetize crankshaft and apply fluorescent powder (fluxing).

A color penetration method may also be used (immersion in bath or using spray can).

Agent: Paint or fluorescent powder, cleaning agent, developer

Hardness test

Test hardness with impact hardness tester (scleroscope hardness).

Minimum hardness of 55 should be available on 2/3 of journal (pin) circumference.

Hardening

Pins without hardened fillets can be inductancehardened or flame-hardened. On the other hand, journals and pins with hardened fillets (arrows) should be inductance-hardened on principle. If this cannot be done, scrap crankshaft.

When hardening journals and pins without hardened fillets, the distance A between hardened runout and fillets radius (5-6 mm) must be maintained.

Checking the hardening results

For perfect hardening, check adjustment of hardening equipment by means of metallographic etching (grinding).

These tests can be made with test hardenings on scrapped crankshafts.

Check hardening by etching surface of journals or pins with a 2 % solution of alcoholic nitric acid (HNO_3) .

No dark spots should appear on journal or pin surface.

Unhardened fillets will become dark.

Hardened fillets, on the other hand, should be as bright as the surface of pin or journal.

A journal or pin which has already passed metallographic inspection may be used for comparison.

Then carefully wash off nitric acid with alcohol.

Protection against corrosion

Crankshafts which are not immediately installed again should be lubricated with engine initial operation oil (SAE 30).

Data

Crankshaft standard dimension and repair stages	Crankshaft bearing journal dia.	Fitted bearing Associated thickness of thrust washers	Crankshaft journal widths	Crankpin dia.	Crankpir width
Normal dimension	57.950	2.15	26.52 26.50	47.950	27.96
Normal dimension	57.965	2.20	26.62 26.60	47.965	28.04
1st repair stage	57.700 57.715	2.25	26.72 26.70	47.700 47.715	
2nd repair stage	57.450 57.465	or	or 26.92	47.450 47.650	up to
3rd repair stage	57.200 57.215	2.35 or	26.90 or	47.200 47.215	28.30
4th repair stage	56.950 56.965	2.40	27.02 27.00	46.950 46.965	

Basic bore and bearing play		Crankshaft bearin	gs Connecting rod bearings
Basic bore dia.		62.500 62.519	51.600 51.619
Basic bore width on fitted bearing		22.00 21.97	
Connecting rod width			23.835 24.165
Permissible out-of-true of basic bore		0.0	01
Permissible conicity of basic bore		0.0	01
Desving play, radial	when new	0.0	03 I-0.073 ¹)
Bearing play, radial	wear limit	0.0	08
Dessing along social	when new	0.10-0.25	0.12-O-26
Bearing play, axial	wear limit	0.30	0.50

1) For radial clearance, try for mean value.

Bearing shells	Wall thickness crankshaft bearings	Width of bearing shells	Thickness of fitted bearing thrust washers	Wall thickness connecting rod bearings
Normal dimension	2.25	17.30-17.60	2.15 or 2.20	1.80
1st repair stage	2.37		2.25	1.92
2nd repair stage	2.50		or	2.05
3rd repair stage	2.62		2.35	2.17
4th repair stage	2.75		or 2.40	2.30
Tightening torques				Nm
Crankshaft bearing bo	blts			90
Connecting red corow	•	initial to	rque	30 + 5
Connecting rod screws		angle of	rotation torque	90–100°
Screw M 18 x 1.5 x 50	0 on crankshaft			370 + 40
Necked-down screws for flywheel or driven plate		Initial torque		30-40
		angle of rotation torque		90-I 00"
Special tools Torque wrench, singe 3/4″ square, 150-800		Cr.	1004-11882	001 589 74 21 00
	e-arm, emitting signal, 1/2'' square, 25-130 Nm		1004-1005	001 589 66 21 00
Puller for crankshaft t	iming gear		11004-9617	601 589 07 33 00
Detent		ell'	11004-11737	601 589 02 40 00
Countersupport for in	iternal puller			000589333300
Internal puller 14.5-1 for radial ball bearings		11004-7247		000589253300
			1	

Note

Engine removed and disassembled.

Main oil duct in cylinder crankcase open (01-130). Oil ducts in cylinder crankcase and in crankshaft carefully cleaned.

Check crankshaft for cracks, dimensional accuracy hardness and concentricity (93-318).

The 3rd crankshaft bearing is provided with thrust washers.

These thrust washers absorb the axial forces of crank-shaft.

The thrust washers (148 and 148a) installed in cylinder crankcase and in bearing cap on both sides are of different shape.

As a torsion lock and to prevent assembly faults, the thrust washers in bearing cap are provided with two holding lugs, of which the outer one is installed off center.

When reconditioning crankshafts, regrind width of fitted bearing journals to one of the dimensions shown in Table (section "Data").

Associate thrust washers to respective journal or pin widths (Table).

2 Bearing cap 4 Screws M 12x60 145 Crankshaft 146 Bearing shell 148 Upper thrust washer 148a Lower thrust washer Install thrust washers of the same thickness on both sides on principle.

Regrinding of thrust washers is not permitted.

As replacement parts, thrust washers are available in sets only. One set comprises an upper and a lower thrust washer (148 and 148a).

Thrust washer sets

Thickness in mm	Set		
	part no.		
2.15	601 030 00 62		
2.20	601 030 01 62		
2.25	601 0300262		
2.35	6010300362		
2.40	601 030 04 62		

Association of crankshaft bearings, installation of crankshaft

1 Install crankshaft bearing cap.

Note: All bearing caps are fitted laterally into crankcase (arrows) and are fastened with 2 screws M 12 x 60 each.

The pilot fit (arrows) is offset from center by 0.5 mm, so that the bearing caps can be mounted in one position only.

The bearing caps are additionally identified from the front to the rear with the code numbers 1, 2, 3, 4 and 5 (arrows), and should not be mixed up.

103 - 26107

2 Lubricate screws for crankshaft bearing caps and tighten to 90 Nm.

3 Measure basic bore in direction A, B and C on two levels (conicity).

If the specified value of a basic bore is exceeded, touch up bearing cap at its parting surface on a surface plate up to max. 0.02 mm.

4 Insert crankshaft bearing shells, mount bearing caps, tighten screws to 90 Nm.

5 Measure bearing dia. and write down.

6 Measure crankshaft bearing journals, find crankshaft bearing radial play.

Note: The bearing play can be corrected by exchanging bearing shells, while trying for mean value of specified bearing play. Crankshaft bearing shells without color code are thicker than those with blue color code, while taking into account that the thickness of walls without and with color code may overlap.

7 Measure width of fitted bearing journal and associate pertinent thrust washers (refer to Table, section Data).

8 Lubricate bearing shells and crankshaft with engine oil and install crankshaft.

9 Provide thrust washers with oil and slip into grooves on fitted bearing (crankcase).

Attention!

Make sure that the two oil grooves (arrows) in thrust washers are pointing toward crankshaft webs.

- 10 Mount crankshaft bearing caps.
- 11 Tighten bearing caps to 90 Nm.

12 Measure crankshaft end play.

13 Rotate crankshaft manually and check for easy running.

Association of connecting rod bearing and installation of connecting rod

14 Check connecting rod screws (03-310).

16 Mount connecting rod bearing caps, while paying attention to identification_

Lubricate connecting rod screws on threads and screw head contact surface and tighten to 30-40 Nm.

17 Measure basic bore in two directions. If one basic bore exceeds the specified value or if it is conical, touch up bearing cap at its parting surface on a surface plate up to 0.02 mm.

18 Insert connecting rod bearing shells, mount connecting rod bearing caps together with bearing shells and tighten connecting rod nuts to 30-35 Nm.

103 - 26742

19 Measure bearing dia. and write down.

20 Measure crankpins, find connecting rod bearing radial play.

Note: The bearing play can be corrected by changing bearing shells, trying for medium value of specified bearing play. Crankshaft bearing shells without color coding are thicker than those with blue color coding, while taking into account that the thickness of wails without and with color coding may overlap.

21 Attach piston to connecting rod (03–316).

22 Provide bearing shells, crankshaft, pistons and cylinder walls with engine oil, install connecting rod with piston (03–316).

Pay attention to identification.

103-26983

24 Measure connecting rod bearing end play, while displacing connecting rod directly at piston pin. Check clearance of connecting rods in relation to crankshaft.

Attention!

Disassemble oil pump and clean, renew, if required. Renew oil pressure relief valve. Disassemble oil filter and clean.

Install initial operation oil filter element. Change engine oil and oil filter element after 1000-1500 km

.

.

Tightening torques		Nm
Screw M 18 x 1.5 x 50 on crankshaft		370 + 40
Screws M 8 x 12 pulley to hub		25
Special tools		
Torque wrench, single-arm, with ratchet, 3/4″ square, 150-800 Nm	1004-11462	001 5897421 00
Puller for hub		601 589 08 33 00
Detent	AUK-11737	601589024000
Sleeve for pushing in radial sealing ring, front	911004-11732	601 589031400
Conventional tool		
Adapter 3/4" square socket to 1/2" square head	e.g. Hazet, I order no. 10	D-5630 Remscheid 58 R-I

Removal

- 1 Remove noise capsule.
- 2 Remove radiator (20-420).

3 Slacken V-belt and remove. Unscrew flange nut (378) for this purpose. Insert a mandrel into spring tensioning lever (374) and relieve hex. screw (375) in relation to draw spring (380) until spring can be pushed back in direction of intake manifold.

Release spring tensioning lever and remove V-belt.

4 Unscrew pulley (161) and pull off flange (157) (03-341).

- 28 Timing housing cover 31 Radial sealing ring 145 Crankshaft 155 Woodruff key, hub 155a Woodruff key, sprocket 156 Sprocket 157 Hub 158 Cylindrical pin
- 159 Cup spring 160 Screw M 18 x 1.5 x 50 161 Pulley 162 Combination screw M 8 x 12

5 Push out radial sealing ring by means of a screwdriver. Make sure that crankshaft journal and mounting bore are not damaged.

6 Check hub (157) for score marks of radial sealing ring, renew hub, if required.

Installation

7 Deburr mounting bore for radial sealing ring and clean.

8 Moisten new radial sealing ring on sealing lip with oil and insert with inserting tool.

Attention!

The radial sealing ring should be accurately square in relation to crankshaft journal, since otherwise no perfect sealing will be obtained.

9 Install hub and pulley (03-341).

10 Mount V-belt and engage spring tensioning lever. For this purpose, swivel spring tensioning lever (374) with a mandrel against draw spring to the left until screw (375) can be slipped through spring tensioning lever. Position collar nut and tighten.

- 11 Install radiator (20-420).
- 12 Install noise capsule.

03-327 Replacing rear crankshaft radial sealing ring

Tightening torques		Nm
Necked-down screw for flywheel	initial torque	30 + 10
or driven plate	angle of rotation torque	90-I 00"
Special tools		
Detent	11004-11737	601589024000
Installation tool for rear crankshaft radial sealing ring	11004-11740	601589034300

Note

The radial sealing ring (22) is seated in an end cover screwed to cylinder crankcase and oil pan and located by means of 2 clamping sleeves (17).

The sealing lip of repair radial sealing ring is offset by 3 mm in inward direction, so that it cannot run in a groove which may have been generated by seriesradial sealing ring on crankshaft flange.

8

1033- 9402

A Radial sealing ring (series) B Repair radial sealing ring

Renewing

- 1 Remove transmission (26-020 or 27-600).
- 2 Remove flywheel or driven plate (03-410).

3 Push radial sealing ring out of end cover by means of a screwdriver.

Make sure that the crankshaft flange and the end cover are not damaged. Cover crankshaft flange with a rag.

4 Check running surface for radial sealing ring on crankshaft flange for damage.

5 Clean mounting bore for radial sealing ring and deburr, if required.

6 Screw inner part of installation tool to crankshaft flange.

7 Fill new radial sealing ring between sealing and dust lip with 1 g or 1 cc longterm grease. Do not fill in more oil, since otherwise the presence of leaks might be simulated.

8 Slip radial sealing ring (arrow) over inner part of installation tool.

9 Push radial sealing ring up to stop into end cover by means of outer part of installation tool.

Attention!

Radial sealing ring should be seated accurately square in end cover for perfect sealing.

- 10 install flywheel or driven plate (03-410).
- 11 Check for leaks with engine running.
- 12 install transmission (26-020 or 27-600).

03-330 Removal and installation of radial ball bearing in crankshaft

Special tools		
Countersupport for internal puller	N004-7724	000589333300
Internal puller 14.5-18.5 mm	11004-7247	000589253300

Removal

1 Remove transmission (26-020 or 27-600).

2 Pull ball bearing out of crankshaft together with countersupport and internal puller.

Installation

3 Coat new ball bearing with glue "Loctite 241", part no. 002 989 94 71 and knock into crankshaft on outer race by means of a suitable mandrel.

4 Install transmission (26-020 or 27-600).

Tightening torques		Nm
Screw M 18 x 1.5 x 50 to crankshaft		370 + 40
Screws M 8 x 12 crankshaft pulley to hub		25
Special tools		
Torque wrench, single-arm, with ratchet, 3/4" square, 150-800 Nm	1004-11622	001 5897421 00
Detent	11004-11737	601 589 02 40 00
Puller for hub		601589083300
Conventional tool		
Adapter 3/4″ square socket to 1/2″ square head	e.g. Hazet, D-5630 Remscheid order no. 1058 R-I	

Note

Engines 601 have no vibration damper and no balancing disk.

- 28 Timing housing cover
 31 Radial sealing ring
 145 Crankshaft
 155 Woodruff key for hub
 155a Woodruff key for sprocket
 1555 Sprocket
- - Sprocket Hub
- 156 157

- 158 Cylindrical pin 159 Cup spring 160 Screw M 18 x 1.5 x 50 161 Crankshaft pulley 162 Combination screw M 8 x 12

Remove noise capsule below.

2 Remove radiator (20-420).

3 Slacken V-belt and remove. For this purpose, unscrew collar nut (378). Insert a mandrel into spring tensioning lever (374) and releave hex. screw (375) opposite to draw spring **(380)** until spring can be pushed back in direction of intake manifold.

Release spring tensioning lever and remove V-belt.

4 Remove crankshaft pulley.

5 Unscrew screw (160) on crankshaft. For this purpose, fasten detent, part no. 601 589 02 40 00, to oil pan.

6 Pull hub (157) from crankshaft journal.

Pull off hard-to-move hubs with puller.

31 26 155 156 155a 145

Installation

7 Slip hub (157) on crankshaft journal and tighten screw (160) to 370 + 40 Nm.

Make sure that woodruff key (155) and groove are in alignment.

Note: Install the three cup springs (159) with crown toward screw head.

8 Mount V-belt pulley, while paying attention to centering by means of cylindrical pin (158).

9 Mount V-belt and engage spring tensioning lever. For this purpose, swivel spring tensioning lever (374) with a mandrel against draw spring to the left until screw (375) can be slipped through spring tensioning lever. Position collar nut and tighten.

10 Install radiator (20-420).

11 Install noise capsule.
Tightening torques		Nm
Screws for cylinder head cover		10
Coupling nuts for injection lines (reference value)		1 O-20
Prechamber in cylinder head (threaded ring)		100 ± 10
Nozzle holder in prechamber		70 + 10
Special tools		
Box end wrench element, open, 14 mm, 1/4" drive, for coupling nut of injection line	11004-1052011	000 589 77 03 00
Wrench element for threaded ring of prechamber	11004-6360	615589000700
Socket wrench element 27 mm, 1/2" square	HIDD ENIS	001 589 65 09 00
Impact puller for prechamber	11004-11774	601 589 06 33 00
Locating device for holder of TDC transmitter	(B) 11004-11883	601 589 06 21 00
Measuring instrument for TDC and 20° after TDC		601 589 07 21 00
Dial gauge holder		3635890221 00
Torque wrench, double-arm, 3/8″ square, 8-32 Nm	Troot-420	001 589 51 21 00
Conventional tool		
Dial gauge A 1 DIN 878	-	. Mahr, D-7300 Esslingen ler no. 810

Note

The TDC-transmitter with holder is fastened to timing housing cover (arrow).

The pin in crankshaft pulley must be accurately under TDC transmitter (arrow) in crankshaft position 20" after TDC.

Adjustment of adjusting slide must be checked and corrected, if required:

- a) When renewing adjusting slide.
- b) When renewing crankshaft with hub or crankshaft pulley.
- c) When completing partial engines.

With cylinder head removed, the measuring pin of the dial gauge can be set directly on piston crown. For this purpose, place magnetic dial gauge holder on cylinder crankcase parting surface.

Checking

- 1 Remove radiator (20-420).
- 2 Remove cylinder head cover.

3 Set piston of 1st cylinder to ignition TDC of 1st cylinder.

- 4 Remove prechamber of 1st cylinder (01-417).
- 5 Screw measuring instrument into prechamber duct.
- 6 Place dial gauge at 2 mm preload on test mandrel.

7 Slowly rotate crankshaft in direction of rotation of engine until large needle of dial gauge stops (TDC position).

8 Loosen dial gauge and place measuring arm under 5 mm preload into test mandrel. Turn dial gauge scale until large needle points to zero.

9 Slowly turn crankshaft in direction of rotation of engine until on engine 601.911 the dial gauge has moved back by 3.22 mm and on engine 601.921 by 3.65 mm.

10 Place locating device into adjusting slide.

Pin in crankshaft pulley must engage in groove of locating device.

If pin is not engaging, correct position of adjusting slide.

Correcting

11 Loosen adjusting slide (42) on screw (41) and displace until pin in pulley engages in groove of locating device.

12 Screw down adjusting slide.

13 Remove dial gauge and measuring instrument.

- 14 Install prechamber (01-417).
- 15 Install valve cover.
- 16 Install radiator.
- 17 Run engine, check for leaks.

Tightening torques		Nm
Screw M 18 x 1.5 x 50 to crankshaft		370 + 40
Screws for cylinder head cover		10
Screws M 8 x 12 for crankshaft pulley to hub		25
Oil drain plug to oil pan		30
	M 6	10
Oil pan to cylinder crankcase	M 8	25
Central screw for fan on coolant pump		25
Adjusting screw for front engine stop		130
Screws for engine carrier to engine mount		35 + 10
Cylinder head bolts M 8		25
	M 6	10
Screws for timing housing cover	M 8	25
Special tools		
Torque wrench, double-arm, 1/4" square, 8-32 Nm		001 589 51 21 00
Torque wrench, single-arm, emitting signal, with plug-in ratchet, 1/2'' square, 40-200 Nm	1004-1006	001 589 67 21 00
Torque wrench, single-arm, with ratchet, 3/4" square, 150-800 Nm	1004-11802	001 589 74 21 00
Puller for hub		601 589 08 33 00

Puller for crankshaft timing gear	11004-9617	601 589 07 33 00
Knocking-in mandrel for crankshaft timing gear	11004-7086	116589071500
Screwdriver with tommy handle for hex. socket screws 6 mm, 440 mm long	· 1904 - F147	116589030700
Conventional tool		
Adapter 3/4 ^{<i>''</i>} square socket to 1/2 ^{<i>''</i>} square head	e.g. Hazet, D-5 order no. 1058	

Removal

- 1 Remove timing housing cover (01-210).
- 2 Pull off clamp (262) and torsion spring (261).
- 3 Unscrew fastening screw (259) and remove oil pump sprocket (257).
- 4 Remove chain for oil pump drive.
- 5 Mark timing chain and crankshaft timing gear in relation to each other.

6 Mark timing chain and camshaft timing gear in relation to each other

7 Remove camshaft timing gear and let timing chain sag.

8 Pull off crankshaft timing gear with puller.

9 Check woodruff key in crankshaft for condition and renew, if required.

Installation

10 Transfer color mark from old to new crankshaft timing gear.

11 Knock crankshaft timing gear with knocking-in mandrel on crankshaft. Pay attention to woodruff key.

Note: For better location when knocking in crankshaft timing gear, the front woodruff key for hub can be inserted.

103-26843

12 Mount camshaft timing gear and timing chain, paying attention to marks.

13 Keep turning crankshaft and check adjusting marks at TDC position of engine (arrows).

14 Mount chain for oil pump drive together with oil pump sprocket.

Note: Mount sprocket in such a manner that its crown is pointing toward oil pump and the three contact surfaces on the oil pump shaft coincide with those on the sprocket (arrows).

118 - 26004

15 Install clamp (262) and tensioning spring (261).

- 16 Install timing housing cover (01-210).
- 17 For further installation proceed vice versa.
- 18 Run engine and check for leaks.

Necked-down screw

		manual	automatic	
		transmission	transmission	
Part no.		1020320071	601 03201 71	
Thread dia. D		M 10) x 1	-D
Necked-down dia. d	when new	8.5-	-0.2	
Necked-down dia. d	min. dia.	8.1		
Length L	when new	22 ± 0.2	26 ± 0.2	
	max. length	22.5	26.5	1034 - 5219
Tightening torque				30 + 10 Nm
Angle of rotation torqu	e			90– 100"
Special tools				
Detent		e fil	9 11004-11737	601 589 02 40 00
Torque wrench, single-a emitting signal, with plu 1/2′′ square, 25-I 30 Ni	ug-in ratchet,		1004-10005	001 589 66 21 00

Note

Weight and dimensions of flywheels of engines with manual transmission are similar.

Flywheels and driven plates of engines with automatic transmissions are identical on all angines.

Flywheels can be replaced without static or dynamic balancing.

Engine 601

D 254.5 mm D1 223 mm H 57 m m

Fasten flywheel and driven plate to crankshaft in such a manner that the unused bores (arrow) on flywheel or on driven plate and spacing washer are in alignment with unused bore on crankshaft flange.

Vehicles with manual transmission

Vehicles with automatic transmission

Layout of flywheel for manual transmission

- 145 150
- 150 151 152 153 154
- Crankshaft Flywheel Ring gear Necked-down-screw Ball bearing Spacing ring

Layout of flywheel and driven plate for automatic transmission

145 Crankshaft 150a Driven plate 152a Necked-down screw 154a Spacing washer

Removal

- 1 Remove transmission (26-020 or 27-600).
- 2 Fasten detent (arrow) to oil pan below.

3 Unscrew necked-down screws (152) and remove flywheel, driven plate and spacing washer.

Installation

4 Measure necked-down dia. of necked-down screws.

If minimum dia. is attained, install new necked-down screws.

5 Position flywheel, driven plate and spacing washer on crankshaft journal in such a manner that the bores (arrow) are in alignment.

6 Screw in necked-down screws and tighten to 30 Nm initial torque and $90-100^{\circ}$ angle of rotation torque.

Data		
Engine		601
Distance a		22.4-22.6
Distance b	when new	16.6
	during repairs	up to
Permissible deviation from axial runout on clutch surface or clutch flange-on surface		0.05 mm

Note

Flywheels for manual transmissions which are showing burnt spots, score marks or cracks on clutch surface, must be refinished by precision turning.

If score marks or cracks are deeper than the max. permissible material allowance, replace flywheel.

If the clutch surface A is refinished, also refinish fastening surface B by the same dimension to maintain distance a.

In the event of repairs, do not machine below dimension b.

For refinishing, clamp flywheel well, so that the permissible axial runout of 0.05 mm is not exceeded.

No cavities and chatter marks should be seen on clutch surface after refinishing.

Data

Axial runout on ring gear	max. 0.4
Centering flange dia. for ring gear	275.00-275.05
Shrinking-on temperature	220 °C
Annealing color	yellow

Conventional accessory

Temperature measuring chalk	e.g. AW Faber-Castell,
color no. 2815/220 (white) Thermochrom	D-8504 Stein beiNürnberg

Note

The ring gear is hardened. To protect hardness, the temperature for heating up ring gear should not exceed 220 °C at any point. This can be done reliably **only** by **means of a hot plate or a heating oven.**

An open flame may be used as an exception only. The flame should touch only the inside of the ring gear.

Following renewal of ring gear, the flywheel need not be balanced.

Renewal

1 Drill into old ring gear and break up with a chisel, or heat quickly and immediately remove.

2 Clean mounting surface of ring gear on flywheel.

3 Uniformly heat new ring gear on a hot plate or in a heating oven. For this purpose, use temperature measuring chalk in accordance with instructions whenever possible.

4 Mount heated ring gear immediately on flywheel.